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Peak Distribution Effects in Random Load Fatigue 
By Jens Trampe Broch, Dipl. ing. E.T.H. 

ABSTRACT 
In describing random processes one normally starts by stating the first order probability 
density function. To further specify the process use is sometimes made of higher order 
probability distributions. One such "higher order" distribution function is the probability 
function for the number of maxima (or minima) per unit time i.e. the distribution function 
for the process reversals. This distribution function is commonly termed the process peak 
distribution. 
The aim of the studies reported in this paper has been to investigate the effects of the 
stress peak distribution upon the fatigue life of a certain type of test specimen excited to 
bending by Gaussian random vibrations. Approximately 200 specimens were tested using 
two different peak distribution functions. The peak distribution functions were produced by 
means of a one and two degrees of freedom system, respectively, excited by bands of 
random noise. 
The RMS-level of the strain as well as the average number of zero crossings were kept 
constant and equal in both tests. Statistical and physical interpretations of the test results 
are presented and discussed. 

SOMMAIRE 
Pour decrire des phenomenes aleatoires, on commence normalement par en donner la 
fonction de densite de probalite du premier ordre. En vue d'apporter plus de precision sur 
le phenomene, il est parfois fait usage de distributions de probability d'ordre superieur. Une 
de ces fonctions de distribution d'ordre «superieur» est la fonction de probability relative 
au nombre de maxima (ou minima) par unite de temps, c'est-a-dire la fonction de distribu­
tion qui concerne les changements de sens dans le deroulement du processus. On I'appelie 
habituellement la fonction de distribution des cretes du processus. 
Le but des 6tudes dont il est question dans ce papier etait d'expiorer les effets de la 
distribution des cretes de la sollicitation sur la longevite d'un certain type d'eprouvettes 
excite en flexion par des vibrations aleatoires gaussiennes. Deux cents specimens environ 
ont ete essayes en utilisant deux fonctions differentes de distribution de crete. Les fonctions 
de distribution de crete ont ete produites au moyen d'un systeme a un ou deux degres de 
liberte, i'un et I'autre excites par des bandes de bruit aleatoire. 
Le niveau en valeur efficace de la contrainte, tout comme le nombre moyen de passages par 
zero, ont ete tenus constants et egaux dans les deux essais. Des interpretations statistiques 
et physiques des r^sultats des essais sont presentees et discutees. 

ZUSAMMENFASSUNG 
Die Beschreibung eines stochastischen Vorgangs beginnt normalerweise mit einer Aussage 
uber die statistische Verteilung der Momentanwerte (Wahrscheinlichkeitsdichte des Moment-
anwerts). Urn den Vorgang naher zu kennzeichnen, gibt man manchmal auch die Verteilung 
fur weitere Kennwerte der Zeitfunktion an. Eine solcher Angaben betrifft die Wahrscheinlich­
keitsdichte, mit der die Maxima (oder Minima) uber den Amplitudenbereich verteilt sind, 
d. h. die statistische Verteilung der Richtungsumkehrungen. Diese Verteilung wird gemeinhin 
als Spitzenverteiiung des Vorgangs bezeichnet. 
Die Untersuchungen, von denen in diesem Aufsatz berichtet wird, hatten das Ziel, die Wir-
kung der Spitzenverteiiung der mechanischen Spannung auf die Lebensdauer eines bestimm-
ten Typs von Priifobjekten zu erforschen, die durch stochastische Schwingungen mit GauB'-
scher Momentanwertverteilung zu Biegeschwingungen angeregt wurden. Etwa 200 Objekte 
wurden mit zwei verschiedenen Spitzenverteilungen gepruft. Die Spitzenverteilungen wurden 
erzeugt, indem Schwingsysteme mit 1 bzw. 2 Freiheitsgraden durch Rauschbander angeregt 
wurden. 
Der Effektivwert der Dehnung wie auch die mittlere Frequenz der Nulidurchgange wurden 
konstant und fur beide Spitzenverteilungen gleich gro(3 gehalten. 
Statistische und physikaiische Deutungen der Prufergebnisse werden vorgestellt und erortert. 
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Introduction 
Structural vibrations encountered in practice are normally a combination of 
several mechanical oscillations acting together and giving a more or less 
complicated displacement versus time trace. If, for instance, the displacement 
of a particular point of a particular structural member of an aircraft in flight is 
plotted as a function of time the result may well be a curve of the type shown 
in Fig. 1. The actual vibration at the point of observation is here caused not 
only by the complex forces loading the airframe but also by resonance effects 
in structural members transferring these forces to the observation point. 
Similar vibration traces may be found from measurements on cars moving 
along rough roads, ships moving in rough waters, complex building structures 
responding to unsteady winds, etc. 

Fig. 1. Typical displacement versus time trace for a particular point on a 
randomly excited complex structure. 

Vibrations of the kind shown in Fig. 1 cannot be conveniently described in 
deterministic terms but must be treated on a statistical or probabilistic basis. 
While the characteristics of simple periodic motion are known when one 
period of motion is known the exact future amplitude of the vibration signal, 
Fig. 1, cannot be predicted even if its complete history is known. It is, how­
ever, possible to determine the probability of finding instantaneous amplitude 
values within a narrow amplitude window, Ax, see Fig. 2. As the probability 
of finding amplitude values within Ax will depend upon the width of the 
window it has been found more convenient for a description to use the con­
cept of probability density instead of probability. The probability density is 
found by dividing the probability of finding amplitude values within Ax by Ax: 

p{x) = Mm P(x, x + Ax) 
zlx-^0 Ax 

where t v A + 
P{x, x + Ax) =?-?In 
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Fig. 2. Sketch illustrating the concepts of probability and probability density 
on the basis of a moveable amplitude "window", Ax, situated at the level x. 

By varying the value of x from - oo to + 00 and plotting p (x) as a function of x 
the probability density curve for instantaneous amplitude values of the vibra­
tions is found. 
The shape of this curve may vary considerably depending upon the nature of 
the applied forces as well as upon possible amplitude nonlinearities in the 
structural responses. However, the most well known probability density curve 
is that, obtained from a normal (Gaussian) random process, see Fig. 3. 

j 

Fig. 3. Illustration of the relationship between the instantaneous amplitude 
values in a Gaussian random vibration signal and the Gaussian probability 

density curve. 
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Probability density curves obtained in the manner described above are often 
termed first order probability density curves because they do not depend upon 
the actual behaviour of the vibration signal before (or after) it passes through 
the narrow amplitude window, Ax, in Fig. 2. If, on the other hand, certain 
restrictions are formulated as to the behaviour of the signal also when it is 
outside Ax the curves obtained are commonly designated as higher order 
probability density functions. 
One such "higher order"*) probability density function is the probability 

• = Maxima 
Fig. 4. Sketch illustrating the distribution of maxima in a random vibration 

signal. 

density function for the vibration maxima, Fig. 4, because it restricts the 
observations on the signal inside Ax to cases where the magnitude of the 
signal is smaller than x both immediately before the signal enters the window 
and immediately after it leaves it again. By plotting the number of maxima 
inside Ax per unit time as a function of signal level, x, a curve proportional 
to the probability density curve for the vibration maxima is obtained. When 
this curve is normalized to unit area it is commonly termed the peak prob­
ability density curve. 
Other higher order probability functions describing randomly varying vibration 
signals can be derived. In general, however, the use of these higher order 
probability functions is rather complicated and they describe the signal in the 
form of probability density surfaces rather than curves. The two probability 
density functions discussed above, i.e. the first order probability density curve 
and the peak probability density curve, are relatively easy to measure and are 
therefore especially attractive to use in the description of random processes. 

Random Load Fatigue 
The fatiguing of engineering materials when these are subjected to alternating 
stresses has been studied for more than 100 years. However, because so 

*) The inverted commas on the term "higher order" are used here because in most text­
books on probability theory a somewhat different definition is given to higher order 
probability density functions. The meaning of the term, however, as explained in the text, 
remains the same. 
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many different factors may influence the fatigue life of a particular structural 
element, and because it is realized that the fatigue process in itself is 
of a statistical nature, no unique method for the prediction of mechanical 
fatigue has as yet been developed. A number of so-called "cumulative 
damage rules" have been suggested in the past, the most well known of these 
being the Palmgren-Miner hypotheses, but none of these rules seem to be 
generally applicable to common service loads. Without going into details it 
seems reasonable here, however, to summarize briefly some recent findings 
on the physical nature of the fatigue of metals. The findings cited have 
developed mainly from the field of aircraft material research where fatigue 
problems are a major concern. 
Even though it is believed that the production of microscopic slip bands in 
the initial portion of the fatigue process is caused by an interaction between 
spatial stress concentrations and submicroscopic crystal dislocations in the 
material no concise proof for this theory seems to exist today. On the other 
hand, when the slip bands have formed they are observed to progress and 
form minute cracks which eventually join together and produce major cracks. 
These cracks then propagate in the material until a final stage of crack 
instability and catastrophic failure is reached. 
While the crack initiation process as well as the final crack instability and 
failure stages are highly statistical in nature the crack propagation process 
seems to follow laws of a more deterministic character. Taken as a whole, 
however, fatigue failure must be regarded as a statistical phenomenon as 
suggested by Weibull in the nineteen forties. 
In addition to fatigue crack initiation and propagation studies a number of 
investigators have also studied the statistical distribution of fatigue endurances 
at various stress levels. Out of these studies an hypothesis has been formed 
that two different fatigue "mechanisms" govern the fatigue life of a particular 
material, one "mechanism" acting at low stress levels and another "me­
chanism" acting at high stress levels. Furthermore, the transition from one 
"mechanism" to the other is supposed to take place gradually with stress level. 
A fact which seems to support this theory is that some materials show a more 
or less distinct "bend" in the fatigue life curve (S-N-curve) at a certain stress 
level. 
The S-N-curve referred to above is a curve indicating the peak amplitude of a 
sinusoidal stress function versus the number of cycles to failure, see Fig. 5. 
Such curves are often published by material manufacturers together with 
other relevant material data. The conditions under which the curves were 
obtained are (unfortunately) not always stated by the supplier. One condition 
is, however, in general fulfilled: the curves have been obtained from tests 
with zero mean stress, i.e. they refer to purely sinusoidal loading of the 
material. As soon as nonzero, or varying, mean stresses are superimposed 
upon the pure sinusoidal loading other types of curves may eventually 
develop. The curve shown in Fig. 5 has been reproduced from a materials 
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handbook and the "bend" in the curve mentioned above is clearly noticed.*) 
If the test specimen is loaded by a forcing function which is not purely 
sinusoidal, for instance a forcing function of the type shown in Fig. 1, material 
data in the form of conventional S-N-curves are not immediately applicable. 
First of all the peak amplitude of the curve Fig. 1, varies irregularly with time, 
and secondly the concept of "cycle" may be difficult to define. 

Fig. 5. Fatigue strength curves for notched 4340 steel. 
(From "Metals Handbook"). 

Even though some sort of "cycle", or frequency, may be defined in a sta­
tistical sense (this is further discussed later in the paper) the correlation from 
"cycle" to "cycle" is widely different from that of a pure sinusoid. Also, as 
the stress reversals (peaks) occur at a variety of stress levels this would 
cause complicated interactions between the two fatigue "mechanisms" (assum­
ing that the "two fatigue mechanism hypothesis" is valid!). 
Altogether, the problem of random load fatigue is a very complicated one and 
a considerable amount of research remains to be done before definite know­
ledge in this area is obtained, which can ultimately be developed into better 
fatigue life predictions and design rules. An attempt to approach some of the 
problems in a phenomenological way is described in this paper and it is 
hoped that this in conjunction with some earlier work of the author, may 
contribute to further such a development. 

Load Spectra and Peak Distributions 
If an amplitude versus time signal of the type shown in Fig. 1 is FOURIER 
analyzed (i.e. converted from a description in the time domain to a description 
in the frequency domain) it will, in general, show a continuous frequency 
spectrum. Examples of such spectra are shown in Fig. 6. 

*) Not all engineering materials show this distinct "bend" . In some cases the "bend" 
consists of a very gradual decrease in slope of the curve with decreasing peak stresses. 
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Fig. 6. Examples of continuous frequency spectra: 
a) Spectrum with constant power spectral density. 
b) Spectrum indicating the existance of a single resonance. 
c) Spectrum indicating that more than one resonance effect is present. 

It should be noted at this stage that in the introduction to this paper the 
signal, Fig. 1, was described in terms of probability density functions while 
at this point another method of description, the frequency spectrum method, 
has been introduced. This might, at first glance, seem a little confusing. How­
ever, both methods of description are in this case based on statistical char­
acteristics of the signal and supplement each other in an excellent way. 
As S. O. Rice and others have shown signals which exhibit Gaussian (normal) 
first order probability density characteristics can be represented by an in­
finite number of sine waves combined in random phase, i.e. by continuous 
frequency spectra. He has also shown that when the signal exhibits a 
Gaussian first order probability density characteristic the frequency spectrum 
defines the signal in a statistical sense so that higher order probability density 
functions are, in principle, derivable from the signal frequency spectrum. 
This means that in the case of Gaussian random vibrations the peak prob­
ability density curve depends directly upon the signal frequency spectrum. 

Fig. 7. Illustration of the "box7'-theory. 
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Based upon the work of Rice the author, in some earlier work, investigated 
this relationship and developed an approximate theory which allowed for an 
easy estimation of the peak probability density curve when the signal fre­
quency spectrum was known. This theory was termed the "box"-theory*) 

Fig. 8. Set of normalized peak probability density curves plotted with a as 
parameter. 

because resonance peaks in the vibration frequency spectrum were approx­
imated in the form of "boxes", see Fig. 7. From these "boxes" it is an easy 
matter to calculate a factor, a, which determines the shape of the peak 
probability density curve, Fig. 8. 
The formula obtained for a in the case of a multi degree-of-freedom system is: 

1 + 2 ( M 2 X$J 
_ \ n \ f i / 

1 + 2 /?„"• f l + 2 (ln-\A X/?„ 

where: U = center frequency of first resonance 
fn — center frequency of the n'th resonance (n > 1) 

*) "Effects of Spectrum Non-linearities upon the Peak Distribution of Random Signals". 
Bruel & Kjaer Techn. Rev. No. 3 - 1963. 
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n = energy-ratio between the maximum responses of the two reso-
1 nances (energy-ratio of the corresponding spectrum peaks) 

Af} = - 3 dB bandwidth of the first resonance peak 
Afn = - 3 dB bandwidth of the n'th resonance peak 

As can be seen from the formula the spectrum defines the peak probability 
density curve, while the converse is not true, i.e. the peak probability density 
curve does not define the spectrum. Said in other words: different frequency 
spectra may produce the same peak probability density curve. The two 
functions discussed in the introduction, the first order probability density 
function and the peak probability density function, may therefore not be 
sufficient to describe a signal of the type shown in Fig. 1 with regard to its 
mechanical damage producing potential. However, when they are considered 
in conjunction with the vibration frequency spectrum certain trends may be 
found which might produce fruitful results. One could, of course, argue that 
a determination of the peak probability density curves is not necessary be­
cause the information is already contained in the signal frequency spectrum. 
There are, on the other hand, several reasons why it is desirable to also 
determine this curve. Firstly it gives certain information as to how, on the 
average, the vibration peaks are distributed over the signal amplitude values. 
Secondly it might, from fatigue experiments of the kind discussed later in the 
text, turn out that only certain a-values need to be regarded in fatigue life 
estimates. Finally, when amplitude non-linearities exist in the vibrating system, 
so that the first order probability density function is no longer Gaussian, the 
peak probability density curve cannot be calculated directly from the vibration 
frequency spectrum and a determination of this curve will consequently 
furnish additional new information about the signal. 

Some Experimental Test Considerations 
The experiments described in the following have been designed to investigate 
the effect of a complex, random stress history upon the fatigue life of a 
certain type of test specimen excited to bending. Two types of stress versus 
time functions were used for the purpose and samples of these functions are 
shown in Fig. 9. (Actually the signals shown in Fig. 9 were obtained from 
strain measurements using resistive wire strain gages. Assuming that a linear 
stress-strain relationship exists in this case, however, the signals will also 
represent the stress versus time functions.) The function plotted in Fig. 9a) 
was obtained by arranging the test specimen so that it acted as a single 
degree-of-freedom resonant system and exciting it mechanically by means of 
an electro-dynamic vibrator, Fig. 10. The vibrator was fed with a narrow band 
of Gaussian random noise centered at the system resonance frequency. 
In the case of the signal Fig. 9b) the test specimen was arranged to form a 
two degree-of-freedom system, Fig. 11, and two bands of random noise were 
used to feed the vibrator. 
The bandwidths of the exciting noise signals were chosen to be wide enough 
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Fig. 9. Amplitude versus time functions for the stresses in the specimens. 
a) Sample obtained from measurements on the single degree-of-freedom test 

system. 
b) Sample obtained from measurements on the two degrees-of-freedom 

system. 

to allow for slight changes in resonance frequency of the test system during 
testing. Two very important considerations had to be taken into account in 
designing the experiments: 

1. The RMS strain (or stress) level should be the same in both cases 
(Fig. 9a and Fig. 9b). 

2. The average number of zero crossings ("average" frequency) was 
to be kept the same in both tests. 

f£ 72.33 

Fig. 10. Sketch of the specimen arrangement used in the single degree-of-
freedom test. (Actually two symmetrically mounted single degree-of-freedom 

systems are shown). 
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The reason for these requirements is that the actual number of high stress 
peaks (above say 2 o, where a = RMS-value) will then be the same in the two 
cases,*) and the only difference between the two stress signals will be the 
distribution of the stress reversals, i.e. their a-value. 
For the single degree-of-freedom system the average number of zero crossings 
is simply equal to the resonance frequency and the only "adjustment" 
necessary is to set the desired RMS strain level. 
In the case of the two degree-of-freedom system the average number of zero-
crossings depends upon the actual resonance frequencies as well as upon 
the ratio between the two resonant responses. Also in this case the previously 
mentioned "box"-theory allows a simple estimate of the relationship, see 
Appendix A. 
When the two resonance frequencies have been adjusted (mechanically) to 
their desired values the system is excited to a low vibration level, first by one 
band of noise only and then by the second band of noise only. The strain 
responses in the two cases are noted and the excitation adjusted until the 
desired response ratio is reached. Then both bands of noise are applied 
simultaneously and the total excitation level increased to the correct test level 
(RMS-strain response level). The average number of zero-crossings can be 

Fig. 11. Sketch of the specimen arrangement used in the two degrees-of-
freedom test. (Two symmetrically mounted specimens are shown). 

checked by means of an electronic counter and the "high" frequency excita­
tion slightly "corrected" until the appropriate value is obtained. 
Typical frequency spectrum recordings of the strain are shown in Fig. 12. 
The RMS test level was, on the basis of some pilot experiments chosen in 
such a manner that the initial setting-up and "correction" period should be 
small compared with the average time to failure. On the other hand, each 
test run should preferably be finished within a normal, or a not too extended, 
working day. Also, the dynamic load should be of such a magnitude that the 
difference in static loading between the two cases investigated due to differ­
ences in mass loads was as small as possible. A check on these loads 
showed that the difference in static loading was of the order of 10% of the 
RMS-value of the dynamic load. The possible consequence of this difference 
is discussed in the section "Evaluation of the Test Results". 

*) See Appendix B. 
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Fig. 12. Typical frequency spectra of the strain in the test specimens during 
testing. 

a) Spectrum obtained from measurements on the single degree-of-freedom 
test system. 

b) Spectrum obtained from measurements on the two degrees-of-freedom test 
system. 

The spectra were obtained from magnetic tape recordings of the strain and 
frequency analyzed after a forty to one tape speed transformation. The actual 
resonance frequencies were 20.5 Hz in case a) and 7 3 Hz and 44 Hz in 

case b). Analysis bandwidth: 6 % (B & K Type 2107). 

Due to the statistical nature of fatigue it was clear that a large number of 
specimens had to be tested to obtain statistically significant trends in the 
results. Furthermore, some sort of automatic detection of failure was ne­
cessary to avoid continuous supervision, and the specimen shape should be 
such that failure occurred at a well defined spatial point. As the tests were 
designed to be comparative rather than absolute the actual material used to 
produce the specimen from was, in the first instance, of little consequence. 
These considerations led to the use of epoxy paper printed circuit boards, 
notched to produce stress concentrations, Fig. 13. The notch was produced 
by drilling and rolling to "pre-damage" the specimen as little as possible. 
From measurements of the dynamic modulus of elasticity and the mechanical 
loss factor of a large number of boards by means of a Complex Modulus 
Apparatus Type 3930 it was concluded that their responses to vibration were 
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Fig. 13. Sketch of the printed circuit board indicating the position of the 
strain gage. 

so similar that a number of specimens could be tested simultaneously in a 
test jig, setting the test level from strain measurements on one of the speci­
mens only.*) 
Fig. 14 shows a photograph of the specimen arrangements. The boards were 
fixed to the test jig at its middle whereby each board constituted two speci­
mens as shown. Three boards, i.e. six specimens were tested simultaneously, 
Fig. 15. Failure in the specimen was detected by the simple fact that the 
failure of the specimen coincided with breaking of the printed circuit. Thus 
detection could be carried out by inserting the print in an electrical circuit. 

The Experimental Test Arrangement 
The experimental test set-up is shown in Fig. 16 and can be split into four 
separate sections, with regard to the functions they carry out. These functions 
are the inducement of vibrations in the specimens, the measurement of the 
induced strain and magnitude of the acceleration level at the vibration table, 
and the detection of failure in the specimen. 

j 

b) 

Fig. 14. Photograph of the actual test specimens. 
a) The single degree-ot-freedom specimen arrangement. 

b) The two degrees-of-treedom specimen arrangement. 

*) This was later confirmed by strain measurements on all specimens in one group, see 
Appendix C. 
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1. Inducement of Vibration: 
The vibrations were induced in the specimens by means of an electrodynamic 
vibrator fed by two Sine-Random Generators Type 1042 with an intermediary 
stage of a potentiometer and a power amplifier, Fig. 16. The potentiometer 
was inserted into the circuit to facilitate the adjustment of the final test level. 

2. Strain Measurement: 
The strain in the specimen was measured by means of a strain gage which 
was glued to the specimen (see Fig. 13). The gage was inserted into a Wheat-

I 

Fig. 15. Sketch of the test jig with one "group" of specimens mounted. 

stone bridge arrangement from which the signal passed through a low pass 
filter and an Audio Frequency Spectrometer Type 2112. It was then measured 
on a Random Noise Voltmeter Type 2417 and recorded on a Level Recorder 
Type 2305, Fig. 16. 
A constant RMS strain level was maintained throughout the series of tests by 
adjusting the test level to a certain meter deflection on the Random Noise 
Voltmeter. A secondary measure of the test level was obtained by means of 
the Level Recorder which allowed a written record to be produced for com­
parison purposes. 
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One possible snag in the system is the performance of the strain gage. This 
was taken care of in two ways. The first was that the adhesion of the strain 
gage was carried out with strict adherence to the instructions given by the 
manufacturer. The second was a static strain gage test. This involved observ­
ing the strain, produced by small weights hung on the specimen, measured 
by the strain gage, and read from a Strain Gage Apparatus Type 1516. The 
test was carried out for three separate weights and a record kept of these 
strains which enabled corrections to be made for differences in the strain 

Fig. 16. Block diagram of the experimental test set-up. 

gage signal used to set the test level. Another aspect of this test was that 
it predicted whether or not a gage would "slip" under test conditions (i.e. 
within the time required for the setting of the test conditions). 

3. Acceleration Measurements: 
The strain gages provided an excellent method for the initial setting of test 
level but unfortunately their own fatigue life was far shorter than those of the 
specimens. This necessitated the use of an accelerometer on the vibration 
table, as a means by which any "drift" in the apparatus could be detected 
and corrected. The accelerometer was placed above the centre specimen and 
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Fig. 18. Table of the ranked endurance data. 

19 

Single degree-of-freedom Two degrees-of-freedom 
test test 

Rank See's Rank 
I I 

See's Rank See's Rank See's 
1 2095 51 8615 1 2965 I 51 14993 
2 2095 52 8616 2 3075 52 15303 
3 2204 53 8665 3 3125 53 15449 
4 2239 54 8689 4 3421 54 15545 
5 2411 55 8695 5 3720 55 15582 
6 2414 56 9016 6 4169 56 15916 
7 2811 57 9053 7 4321 57 16092 
8 2820 58 9394 8 4353 58 16125 
9 2886 59 9397 9 5641 59 16638 
10 2996 60 9533 10 5727 60 17008 
11 3046 61 9558 11 5756 61 17287 
12 3086 62 9688 12 6316 62 17506 
13 3124 63 9880 13 6389 63 17674 
14 3501 64 10430 14 8014 64 17810 
15 3734 65 10490 15 8050 65 18206 
16 4078 66 10723 16 8120 66 18229 
17 4130 67 10829 17 8145 67 19728 
18 4136 68 11206 18 8200 68 20045 
19 4177 69 12529 19 8231 69 20170 
20 4276 70 12550 20 ! 8265 70 20675 | 
21 4421 71 12806 21 8906 71 21457 
22 4426 72 13014 22 9202 72 21879 
23 4717 73 13277 23 9718 73 21883 
24 4956 74 15915 24 ! 9976 74 22034 
25 5223 75 16140 

L 25 10362 75 22329 
1 26 5459 76 16232 26 10390 76 22694 

27 5742 77 16418 r 27 11353 77 23629 
28 5807 78 16638 28 11442 78 23663 
29 6058 79 17062 29 11516 79 I 25070 
30 6143 80 17787 30 11772 80 25167 
31 6194 81 17843 31 12316 81 26022 
32 6194 82 17928 32 12339 82 26055 
33 6202 83 18093 33 12357 83 26309 
34 6640 84 18292 34 12475 84 26425 
35 6657 85 19106 35 12570 85 26865 
36 6661 86 19133 36 12669 86 26987 
37 7566 87 19200 37 13115 87 27620 
38 7614 88 20462 38 13160 88 ! 27857 
39 7815 89 20796 39 13250 89 27895 
40 7984 90 20925 40 13251 90 28000 
41 8016 91 21010 41 13330 91 28086 
42 8133 92 21333 42 13497 92 28991 
43 8190 93 21937 43 13707 93 29159 
44 8225 94 22000 44 13795 94 29245 
45 8226 95 22220 45 13823 95 I 29775 
46 8355 96 22381 46 13981 96 31003 
47 8357 97 23680 47 14014 97 31311 
48 4387 98 24281 48 14261 98 32277 
49 8493 99 27868 i 49 14483 99 32541 
50 8616 | 100 30162 i 50 14719 100 32891 

^ 



the signal was fed through an Accelerometer Preamplifier Type 2622 to a 
Vibration Meter Type 2502. 

4. Detection of Failure: 
Failure detection was established by inserting a Statistical Distribution Ana­
lyzer Type 4420 into an electrical circuit including the print on the specimen 
board. The Distribution Analyzer was switched to operate as a 6-channel time 
measuring device with a one second time resolution. When the test level was 
set the counter was started and when failure occurred the printed circuit 
would break and the counter would stop automatically. Trouble was not ex­
perienced with any "remaking" of contact by the printed circuit after failure 
because the weights used on the end of the specimens kept the circuit open. 

Evaluation of the Test Results 
Two hundred specimens were tested, one hundred in the form of single 
degree-of-freedom systems and one hundred in the form of two degrees-of-
freedom systems. Histograms of the test results are shown in Fig. 17 while the 
table Fig. 18 shows the ranked endurance data. To allow trends in the results 
to show up as early as possible, and to outrule systematic errors in the test 
set-up, a number of tests were first run on the two degrees-of-freedom system, 
then on the single degree-of-freedom system, then on the two degrees-of-
freedom system again and so forth. This method of testing also allowed a 
very useful graph to be produced during the test which clearly indicated the 
trends, see Fig. 19. Here the statistical mean value of the endurance is 
calculated and plotted as a function of the number of specimens actually 

Fig. 19. Mean values of the endurances plotted versus the number of 
specimens tested. 
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tested, i.e. after each test run a "correction" could be applied to the previ­
ously calculated mean value. The graph shows the erratic variation of the 
sample mean with only small samples then goes on to the final clarification of 
the two tests in the manner of a greater uniformity of the sample means with 
increasing sample size. This plot also shows the reason for the sample size 
used in the experiment. At the larger sizes the means show a marked 
tendency for random variations about some central means which should in 
theory degenerate into straight lines as the sample size approaches infinity. 
The values of the means at this point would then be the true population 
means. This plot also clearly demonstrates the difference between the two 
sample means. 
To further ensure statistical significance of the results various techniques 
might be used. However, because the sample sizes in this case are rather 
large (100 specimens) the simple "variation of the mean" test is applicable. 
This test is based on the fact that the mean of any sample of a population is 
only an estimate of the mean of the true population, and, as can be shown 
mathematically*) the standard deviation of the mean is: 

om = —= 

where om = standard deviation of the mean 
os = standard deviation of the sample 
N = number of items in the sample 

The actual values of the means and standard deviations for the two tests 
concerned are tabulated below. 

i ; 

Mean os om 
i 

l 

Single degree-of-freedom 10902 7206 721 
test seconds seconds seconds 

Two degrees-of-freedom 16330 8336 834 
test seconds seconds seconds 

i 
i 

As the difference between the two mean values is larger than six standard 
deviations of the mean it must be concluded that the difference in endurance 
between the two tests is statistically highly significant. 
To physically explain the difference in endurance it is necessary to consider 
for a moment the waveforms of the stress signals in terms of frequency 
spectra and peak distributions. The frequency spectra for the two stress 
functions were shown in Fig. 12 and the normalized peak distribution functions 
are plotted in Fig. 20. The latter can either be calculated from the spectra 

*) See for instance P. G. Hoel: "Introduction to Mathematical Statistics", Third Edition, 
p. 143. 
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Fig. 20. Normalized peak probability density curves of the measured strain 
signals. 

a) Curve obtained from measurements on the single degrec-of-freedom 
system (a » 1). 

b) Curve obtained from measurements on the two degrees-of-freedom 
system (a « 0.275). 

by means of the nbox"-theory or measured directly from magnetic tape re­
cordings, see Appendix B. 
In the case of the single degree-of-freedom system the frequency spectrum 
shows only one "peak" indicating that the signal consists basically of a 
single "wave". The corresponding peak distribution curve also indicates that 
vibration maxima occur practically only on the "positive" side of the zero 
signal line (and consequently, vibration minima occur only on the "negative" 
side of the zero signal line!). From the theory of resonating systems it is then 
clear that between two successive high level stress maxima relatively large 
vibration strokes occur (see also Fig. 9a). Such a stroke will cause a once 
started fatigue crack to open and produce a considerable stress concentra­
tion at the crack tip, which again may cause the crack to grow. 
In the case of the two degree-of-freedom system, on the other hand, the fre­
quency spectrum shows two distinct "peaks", indicating that the signal con­
tains basically two superimposed "waves". From the corresponding peak 
distribution curve it is seen that here some vibration maxima occur also on 
the "negative" side of the zero signal line. This again means that some vibra­
tion minima occur on the "positive" side of the zero signal line. Consequently 
no large vibration strokes need to occur between two successive high level 
stress maxima. That this actually is the case is confirmed by looking at 
Fig. 9b). The change in stress at the fatigue crack tip may therefore be 
considerably less in this case than in the single degree-of-freedom case even 
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though the stress level at which the two successive maxima occurs might be 
the same in both cases. Or said in other words: Even though the number of 
high level stress maxima is the same in the single degree-of-freedom and in 
the two degrees-of-freedom cases (see Appendix C) the changes in stress at 
the fatigue crack tip "per maximum" may be widely different. 
The ideas outlined here, may at least to a certain extent, explain the difference 
in fatigue life experienced between the single degree-of-freedom and the two 
degrees-of-freedom tests described above. 
Before finishing the discussion of the test results the possible effects of the 
difference in static loading between the single degree-of-freedom and the two 
degress-of-freedom test systems mentioned on p. 13 should be touched upon. 
Because this difference was very small (10 % of the RMS-value of the dynamic 
load) it is not deemed to upset the results to any extent. If, on the other 
hand, it did have any influence at all it has brought the mean values of the 
two tests closer together, as the two degrees-of-freedom system had the 
largest static load. 

Conclusion 
The tests discussed in this paper have been carried out to demonstrate, in 
a simple way, some effects of randomly superimposed "waves" upon the 
fatigue life of mechanical constructions. From the results it seems clear that 
various factors will affect the fatigue life of the construction when this is 
exposed to complex random loads, even if the loads are Gaussian and the 
construction behaves linearly. Some of these factors are the RMS-value of 
the stress, the "average" zero-crossing frequency, the peak distribution factor, 
a, and, in the case of two degrees-of-freedom systems, also the frequency 
ratio between the two resonances. When the construction becomes more 
complicated (multimodal) further factors become involved. On the other hand, 
it might when practical experiments have been made, turn out that a number 
of these factors could be neglected. Further work along the lines outlined in 
this paper is necessary, however, before firm conclusions in this respect can 
be drawn. 
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Appendix A 
Estimation of Zero-Crossing Frequency by Means of the "Box"-theory 
As mentioned in the text, and further detailed by the author in the B & K 
Technical Review No. 3-1963, the so-called "box"-theory can, under certain 
circumstances, be used to estimate normalized peak probability density curves 
from a knowledge of the frequency spectrum of Gaussian random signals. 
Similarly, the "box"-theory may also be used to estimate the average zero-
crossing frequency of the signal. 
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Starting with Rice's exact expression for the expected number of zeros per 
second and using his terminology one can write: 

H m,, Sf2w(f)cli 
O f = ■ -■ - - 9 ° 

Sw(i)df 
L L 0 

where h is the average zero-crossing frequency and w(f) is the power spectral 
density of the signal. 

F/g. A7. 

To derive a general "box"-approximation formula for fG in the case of multi 
degrees-of-freedom systems consider Fig. A.1. The expressions for WQ and 
WQ

U become: 

J w[f)df = / co t f + Jc2of/ + / c3df + ... 
t U fe 

\ AU c, AU c, / 
= AU C (1 + /?2 + /?3 + /?4 + . . . ) 

!?„ = AU c, (1 + i /?„) = 4f, c, 21 /?„ 
2 1 

where the meaning of Afu d , z)f2 etc. can be seen from Fig. A.1 and 

Zlf iC, 

Similarly: 

Wa" = -An2Sf w{f)df = - 4 yr2 (J fcctf + I fc2d/ + . . .) 
/. U 

= - 4 ^ [ C , (/b3 - fa3) + C2 (fd
3 - fc

3) + C3 (U3 - fe3) + • . ■] 
o 
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According to Fig. A.1: 
h = U + AU ; U = U + Af2 ; . . . 

Thus: 

When - is very small (lightly damped resonance) then ( 1 + — l l 

« 1 + 3 AU 

*a 

whereby 
fb

3-h3^3f2 AU ; U-U3^3U2 Ah \ ... 
Also, in this case no great error is introduced by setting fa = U, fc = A>, fe = U, 
etc. where fu f2, ft . . . are the center frequencies of the different resonances. 
Using these approximations the expression for Wu becomes: 

¥o" = -4n* Afi c, U2 ( 1 + | ( - ' V ) V ) 

= - 4 7r2 AU C /i2 i? f " ) #, 

By inserting !̂ o and ¥0" into Rice's formula for f0 one obtains: 

Applied to the two degrees-of-freedom system this gives: 

Fig. A.2. 
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y 1 + /? 

In Fig. A.2 the ratio ° is plotted against 2 with /? as parameter. 

Appendix B 
Determination and Measurement of Probability Density Data 
In the case of the single degree-of-freedom system the normalized peak 
probability density curve should theoretically follow, very closely, the so-called 
Rayleigh probability density function. That this actually is the case can be 
seen from Fig. 20 of the text. 
To determine the peak probability density curve for the two degrees-of-free-
dom system, two methods can be used. Either the a-value for the distribution 
can be determined from the frequency spectrum, Fig. 12b), and the cor­
responding normalized probability density function plotted, or the curve can 
be measured directly from magnetic tape recordings of the strain. Both 
methods are demonstrated in the following. 
An estimate of the a-value from the frequency spectrum can be made by 
means of the "box"-theory as follows: 
The frequency ratio between the two resonances is approximately (see Fig. 
12b): 

2 » 6 = 2.6 octaves 

As the frequency analysis data were obtained by means of a constant percent­
age bandwidth analyzer a "correction" of 2.6 X - 3 dB = - 7 . 8 dB must be 
applied to the data. 
The level difference between the two resonance peaks, as read from the 
spectrum, is approximately -5.5 dB. Together with the above mentioned 
"correction" this gives -(7.8 + 5.5) = -13.3 dB. 
Because the Q-values of the two resonances are of the same order of 
magnitude, and because the frequency analysis was performed as constant 
percentage bandwidth analysis, no correction need be considered for the 
bandwidth ratio, which is then found to: 

Afi = 1 7 ° = 6.55 
AU 26 

The total energy ratio (/?) is thus: 

/? = 6 5 5 = 0.306 
21.4 

as -13.3 dB corresponds to a ratio of 
21.4 
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Fig. B.1. 

It is now an easy matter to find a from the formula (see also p. 8): 

_\ fJ n = (1 + 36 X 0-3)2 

a ~ N , /?! N + / M 4 J 1-3(1+36X36X0.3) " 

The normalized peak probability density curve for a = 0.275 is plotted in 
Fig. B.l and compared to measured (and normalized) data. 
Probability density measurements on tape recorded data of the strain signal 
were made by means of a sligtly modified Probability Density Analyzer Model 
161, see Fig. B.2. The "window"-width of the Analyzer was adjusted to 0.15 a 
and the hysteresis in the "window" flip-flops were given the same value to 
avoid extraneous, very low level noise disturbance. An original sample dura­
tion of 400 seconds was used, which by a forty-to-one tape speed trans­
formation was reduced to 10 seconds. 

Fig. B.2. 
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Fig. B.3. 

The actually measured number of strain maxima are plotted in Fig. B.3 to a 
logarithmic scale, both for the two degrees-of-freedom and for the single 
degree-of-freedom test. Due to the limited duration of the samples it should 
be noted, however, that the statistical accuracy of the data is also limited. 
Data from two samples of each test are tabulated below. 
Also the first order probability density curve was measured in both cases. 
The results of the measurements are shown in Fig. B.4 and compared with 
the normal Gaussian curve. 
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Fig. BA. 

Appendix C 
Variation in Strain Between Specimens 
It was stated in the text that the tests were carried out in groups of six speci­
mens with a strain gage on the centre specimen to set the level. This poses 
the question of whether the strain in the centre specimen is representative of 
the strain felt by the other specimens in the group. To clarify this the follow­
ing experiments were carried out. Strain gages were attached to all six speci­
mens in a group of specimens which were chosen at random from the supply. 
The static strain gage test (see main text) was then carried out for all six 
strain gages and the results noted. The specimens were then mounted on the 
vibration table in the manner used for normal testing and the strain gages 
wired to a multi switch and connected to the strain measuring equipment of 
the test set up. A low level random vibration signal was fed into the electro-
dynamic vibrator. 
The signals from the various strain gages were then observed successively on 
the Level Recorder. The use of a Level Recorder allowed for an easy method 
of comparison. When the signals from the strain gages had been measured 
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and recorded the level was increased to the test level and a normal test 
carried out. 
As results of the above described experiment the following was noted: 

1) The variation in the response of the strain gages from the static 
strain test was less than 10%. 

2) The variation in dynamic strain between the specimens when tested 
on the vibrator was of the order of 1 dB. 

3) The variation in average zero crossing frequency between the speci­
mens was less than 2 Hz. 

4) The spread in fatigue life was "normal", see table below. 

Specimen 1 2 3 4 5 6 

Fatigue 
Endurance 9820 5742 18292 19106 8387 4717 
(Seconds) 

From these results it can be concluded that although there may be small 
variations in the strain from specimen to specimen, the variations observed 
above are not significant and can be explained from the difference in 
response of the various strain gages. 
The spread in fatigue life also showed that the specimens were not a singular 
group with an exceptionally uniform character but were a true representation 
of the specimens used. 
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